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Maritime transport accounts for over 80% of the world trade vol-
ume and is the backbone of the global economy. Global supply
chains create a complex network of trade flows. The structure of
this network impacts not only the socioeconomic development
of the concerned regions but also their ecosystems. The move-
ments of ships are a considerable source of CO, emissions and
contribute to climate change. In the wake of the announced devel-
opment of Arctic shipping, the need to understand the behavior
of the maritime trade network and to predict future trade flows
becomes pressing. We use a unique database of daily movements
of the world fleet over the period 1977-2008 and apply machine
learning techniques on network data to develop models for pre-
dicting the opening of new shipping lines and for forecasting
trade volume on links. We find that the evolution of this sys-
tem is governed by a simple rule from network science, relying
on the number of common neighbors between pairs of ports.
This finding is consistent over all three decades of temporal data.
We further confirm it with a natural experiment, involving traf-
fic redirection from the port of Kobe after the 1995 earthquake.
Our forecasting method enables researchers and industry to easily
model effects of potential future scenarios at the level of ports,
regions, and the world. Our results also indicate that maritime
trade flows follow a form of random walk on the underlying net-
work structure of sea connections, highlighting its pivotal role in
the development of maritime trade.
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n global supply chains, centers of production and consump-

tion are far away from each other, creating a complex network
of trade flows. Over 80% of all cargo, in terms of volume, is
carried by sea, accounting for 70% of the total value of inter-
national trade (1), with ships being the least expensive means of
transportation in terms of marginal cost per item (2). Maritime
transport is regarded as the backbone of global trade and of the
global economy (3).

Maritime trade flows impact not only the economic develop-
ment of the concerned regions but also their ecosystems. Moving
ships are an important vector of spread for bioinvasions (4,
5), especially for marine species. At the same time, the future
of the maritime transport industry is inextricably linked to cli-
mate change: The movements of ships contribute significantly
to global CO;, emissions (6), and, conversely, future shipping
routes are likely to be affected by the consequences of cli-
mate change. With the development of Arctic shipping becoming
a reality, the need to understand the behavior of the system
of maritime trade flows and to forecast their future evolution
reasserts itself.

Despite the obvious and crucial importance of maritime logis-
tics to the world economy, only a few works provide a detailed
overview of the global distribution of maritime trade flows (4),
and even fewer analyze their long-term evolution and the rules
which govern it (7, 8).

Current research on maritime transport and ports tends to
focus on particular operators or segments of shipping industry,
regions, and specific snapshots in time (9-12), whereas stud-
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ies analyzing historical evolution of the maritime network as a
whole are scarce (13). This is presumably due to the difficulty
of development or acquisition of a global temporal database on
maritime trade flows. The only comprehensive statistical source
allowing for the representation of global maritime trade flows
accurately and over a long period, developed by the main mar-
itime insurer, Lloyd’s, has only begun to be exploited, due to
restricted access to these sources and lack of adequate technical
tools. In this study, we aim to fill this gap by using data on daily
movement of the world fleet between 1977 and 2008 provided by
Lloyd’s List Intelligence. We treat the available data (16.9 mil-
lion recorded ship voyages) with tools from complex systems and
machine learning on graphs. Our goal is to enable the extraction
of economically viable information about trade and trade vol-
umes from data that are not only port-specific but also depend
on the broader structure of connections between the ports estab-
lished by the movements of ships. This approach is motivated
by the fact that vessels are functionally comparable to road or
rail infrastructure and should be seen as such while designing
transport or trade policies (14). In this paper, we introduce
tools to model maritime trade flows and simulate the effects of
potential shocks or changes to the system at local, regional, and
global scale.

Network generative models are used to explain mechanisms of
network evolution by assigning probabilities of creation to indi-
vidual potential links based on characteristics of the involved
nodes. From the point of view of complexity science, genera-
tive models for real-world networks have been in the spotlight
(15-17) ever since the acclaimed preferential attachment model
was proposed by Barabasi and Albert (18). Our work develops a
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generative model of link opening specifically for the mar-
itime trade network. We also apply a similar methodology to
explain maritime trade flow volumes over existing links. In
both scenarios, this study does so based on temporal, historical
network data.

Our research design consists in uncovering the rules governing
the evolution of maritime trade network ex post and is almost
entirely data driven. The network features, which are the input
variables fed into the considered learning methods, include both
a preselected set of conventional network measures found with
a metaoptimization technique and port characteristics suggested
by the literature. We then feed combinations of these features
into different learning methods to automatically construct the
best models for predicting link creation and future trade flows.
This process produces models that hit the sweet spot between
prediction accuracy and the amount of data needed as model
input. We believe that the scientific approach proposed in this
work, which consists in automatic learning of network generative
models directly from available temporal data (analysis of newly
created edges and weight changes between two time frames),
may also be of independent interest in other areas of complexity
science.

In this study, we have found that models relying on features
of the pure network topology, in some cases augmented by addi-
tional information on sea distances, are the most powerful for
predicting link creation and estimating trade flows in maritime
trade for all vessel types. In all contexts, we obtain the most accu-
rate forecasts when relying on one specific network feature: the
number of common neighbors between a pair of ports, under-
stood here as the number of other ports that are simultaneously
trading partners for both of the ports in question (see Fig. 1 for
illustration). We find that the relative quality of models is stable
across the studied period (1977-2008).

We have evaluated the performance of models relying on
network features against classical gravity models that use dis-
tances and data on demographic and economic development to
describe the affinity between ports, an approach popular in geo-
graphic and economic literature (2) and frequently used as a
baseline for evaluating the significance of other effects [such as
the network connectivity index (19)]. Our research methodol-
ogy encompasses both types of models and automatically tunes
their parameters (where applicable) to their best performance.
We have found that classical gravity models perform very poorly
and that, in the case of maritime trade flows, they are very far
from a “fact of life” (20). Indeed, our results suggest that classi-
cal gravity is almost as poor a baseline model for maritime trade
as a hypothesis of random uniform link creation that requires
no input. We also benchmarked against a tailored variant of

La Spezia

the gravity model which uses, as weights, port throughputs in
the gravity equation (4), with affinity between ports moderated
through their sea distance and measures of cultural and histori-
cal ties [such as sharing a common language, country, or colonial
origin (21)], in a combination tuned to optimal performance.
We call this model port gravity. We have found port gravity
not to perform well in predicting link creation and to perform
moderately well in predicting actual trade flows. It seems that
these models miss an important piece of the story: that affin-
ity between ports is influenced by network effects which arise
from preexisting network infrastructure. The nonnetwork vari-
ables conventionally used in the gravity models are no more than
a partial proxy for some of these effects (S1 Appendix, section L).

Armed with this knowledge, we have additionally tested
the effect of common neighbors in a natural experiment—the
destruction of the port of Kobe by an earthquake in 1995 and the
subsequent redirection of trade flows forced by this unfortunate
event. We have found that the simple number of common neigh-
bors shared with Kobe in 1994 successfully identifies ports taking
over traffic from Kobe, at least as well as and, in some ranges,
better than the models relying on economic data. This connec-
tion further supports our claim that network effects, specifically,
network-based affinity, govern the evolution of maritime trade.

Looking more generally, our findings support a vision of trade
in which units of goods follow a form of random walk on the
underlying network structure. The observed effects provide hints
as to the precise nature of this random walk process which turns
out to be local, as it relies on information accessible only in the
port’s neighborhood. This effect is observed despite the nature
of the maritime industry, which involves strong concentration of
capital and very few global key players controlling most of the
world’s shipping market (22).

Results

Dataset and Approach. We use a unique, temporal dataset of daily
movements covering the majority of the world fleet (SI Appendix,
section A) between 1977 and 2008, developed by the main
maritime insurer, Lloyd’s, licensed to the European Research
Council (ERC) “World Seastems” project. The raw database has
been cleaned and treated to extract only meaningful movements
of ships (ST Appendix, section B).

For the learning process, we construct yearly snapshots of the
maritime trade network, where ports stand for nodes, and links
are created by ship voyages between two ports in a given year.
A link is created as soon as the total vessel dead weight ton-
nage (DWT) transported along it exceeds a certain threshold
(SI Appendix, section C, as well as SI Appendix, section K where
we consider an alternative network definition for liner shipping).

Fig. 1. The concept of common neighbors. The two common neighbors (or “common connections”) of the ports of Tangier and Palermo are Marsaxlokk
(Malta Freeport) and La Spezia, represented by the full red nodes. This example comes from the studied network of container carriers in 2007.
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Modeling maritime trade as a network has recently become
a common practice in the industry (23) and is justified by the
relative rigidity of sea connections, resulting from both techno-
logical reasons (port types, infrastructure, depth, capacity etc.)
and business reasons. In our study, the overlap of links appear-
ing in the network in two successive years is in the range of 55 to
65% (reference value for model of uniform independent random
connections: 0 to 1%, depending on year and vessel type), with
more-frequented links being preserved more frequently.

We construct a separate network for each of the main com-
mercial vessel types: container carriers, dry bulk carriers, gen-
eral cargo vessels, petroleum tankers, and liquefied natural gas
tankers (accounting, in total, for 93% of the world fleet DWT in
the database). This division into subnetworks is made because it
is known that different vessel types follow different movement
patterns (4, 13), and some use specialized ports.

In the modeling process, we first consider a broad set of
features (characteristics of ports and the links between them),
suggested by the literature on network formation (24-26) and
works on spatial interactions and international trade (2, 27, 28).
The considered port characteristics include demographic and
gross domestic product (GDP) economic variables, such as pop-
ulation potential and country (SI Appendix, section D) and port
throughput, as well as features that arise from the comparative
place of the port in the broader network of maritime connec-
tions: so-called network centrality measures. Link characteristics
include features that arise from relations between the pairs of
ports: sea distance, hop distance, number of trade partners in
common (common neighbors measure), or cultural and histor-
ical ties. A model F' based on port and link features produces,
in general, a prediction value w; ; which, depending on the con-
text, describes the probability of opening a link between a pair of
ports, i, j, or describes the flow value between these ports. This
is written as

wy; = F (PortFeatures;, PortFeatures;, LinkFeatures ;). [1]

The following research design ensures that we discover the best
of the models constructed with the available features. In order
to preselect dominant features which are strongly reflected in
the observed network structure, we apply a metaoptimization
technique: symbolic regression (29) on formulae of generative
network models for a static snapshot of the network.

We then feed learning methods with combinations of these
dominant features, as well as other data suggested by the liter-
ature on gravity in trade, and evaluate the predictive quality of
the obtained models (Materials and Methods and SI Appendix,
section D). This learning approach generalizes and subsumes any
ad hoc polynomial combinations of features (sometimes known
as indices; cf. refs. 30 and 31) which could be designed by hand.
In all cases, in this final step, we use features from each year Y to
predict new links and flows in year Y+1. The models are cross-
validated on random cuts of the network into training and testing
sets (see Materials and Methods). This approach has allowed us to
identify the best models based on their predictive quality, while
minimizing researcher bias. In this way, we have been able to
look beyond and possibly bypass the most intuitive gravity-based
models.

Model for Predicting Link Creation. We first obtain a model for
predicting link creation in the maritime trade network. We do
so by testing models consisting of different sets of features that
include network measures and port characteristics. We compare
the relative performance of these models by analyzing the pro-
portion of the number of correctly predicted link openings to the
number of all new links that were created in Y+ 1. This measure
was chosen to best reflect the goals of the model in real-world
applications, where the identity of the created links is crucial,
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and, in this sense, it is more demanding than network similar-
ity measures used in the literature of network generative models
(29) which consider overall network structure and statistics.

The most successful model that we discover turns out to be
the same for all vessel types, and its relative quality is stable
across the studied period. It relies on the number of common
neighbors between a pair of ports tempered by sea distance
between them (Fig. 2). Intuitively, this means that the probabil-
ity of link creation in the maritime trade network is proportional
to the number of neighbors the two ports have in common and
decreases the farther apart these ports are from one another.

We find that models which rely on the number of common
neighbors, even when they are very simple, deliver much better
predictions of link creation than any gravity model. Our net-
work generative model with common neighbors and sea distance,
which uses no external economic data, correctly predicts 19 to
24% of edges created from one year to another depending on
the vessel type, on average, over the studied period (Fig. 2 and
SI Appendix, sections G, H, J, and K). Moreover, a parameter-
free variant of our model using only a single variable—the
number of common neighbors—achieves comparable prediction
results at 19 to 23% (lower by at most 1 percentage point [pp]).
For completeness, we compare the obtained models to those pre-
viously proposed for the purpose of estimating maritime trade
flows. We find that port gravity, which uses data on port perfor-
mance (throughputs) as weights, predicts, on average, 14 to 20%
of links depending on the vessel type (worse, by 3 pp to 6 pp,
than common neighbors with sea distance). The contribution of
features based on cultural and historical ties to the performance
of port gravity is negligible in all cases, not exceeding 1 pp.

The advantage of the common neighbors-based models is even
more apparent when identifying those potential links which are
the most likely to be opened in the coming year (e.g., identifying
new links with a fixed low ratio of false positives). The perfor-
mance of the model relying only on the number of common
neighbors, compared to port gravity, is illustrated by the sample
maps in Fig. 3 which show the set of interregional link openings
predicted with at least 50% accuracy by each of the models (less
than 50% of false positives). Depending on the precise setting,
the simple parameter-free common neighbors model correctly
predicts 2 to 5 times more link openings than port gravity, even
when the parameters of the latter model are tuned specifically to
each instance (also SI Appendix, section I).

The obtained results show that geography (distance) plays a
role in networks built by some types of vessels, whereas the effect
of common neighbors is stable across vessel types, capturing a
universal and crucial feature for the creation of direct links in
maritime trade. The link prediction quality delivered by models
relying only on common neighbors is, on average, very close to
that of models which additionally include sea distance. We note
that the number of common neighbors is only very weakly corre-
lated with sea distance, and the sign of the correlation depends
on the vessel type (SI Appendix, section L).

We further note the poor performance of the classical grav-
ity model (2, 32) that relies on population potentials of ports,
country GDP values, and sea distance. This model, on average,
manages to correctly predict 5 to 7% of newly created edges.

We also observe that combining data on GDP values or pop-
ulation potentials with the number of common neighbors does
not lead to an increase in prediction accuracy of the common
neighbors model, which indicates that these two variables have
no further added value for predicting links in maritime trade
(81 Appendix, section M).

Interpretation of the Common Neighbors Effect. One possible
explanation for the good performance of the common neighbors
effect when predicting link creation in the maritime trade net-
work is the tendency to shortcut routes. The number of common
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Fig. 2. Percentage measure of correctly forecasted link openings by different models between 1978 and 2008. Predictions for year Y+1 are based on
features from year Y. Averaged results over the period are provided in the table. In the design of the measure, the number of links to be predicted by each
model was set to the number of links actually created between the consecutive years, thus, false positives ratio = false negatives ratio = (100% — percentage
measure). The relative quality of models for link forecasting is stable across the studied period. The models relying on the number of common neighbors

are consistently the best, for all vessel types.

neighbors between a pair of ports corresponds to the number of
two-hop paths in the network between them. Two ports sharing
a large number of neighbors can be expected to have a higher
volume of indirect trade flow between them which passes via the
ports they are both connected to. Creating a direct connection
instead of using intermediary ports reduces transport costs by
avoiding costly transshipment.

In this context, the common neighbors effect in link creation
is also consistent with the representation of transport flow as a
Markov process on the network (33). Consider a simple exam-
ple of a memoryless model in which a unit of trade located
at a port ¢ is equally likely to be transported directly to any
of the neighbors of 7. In a regular network topology (i.e., one
with identical degrees), the distribution of ports at which the
unit may be located after two steps of such a walk corresponds
mathematically to that given by the common neighbors measure
for the port of origin, normalized over all possible destination
ports. We discuss more-advanced Markovian models in subse-
quent sections, where the random walk is biased toward certain
neighbors.

In other domains, the number of common neighbors has been
proven to work successfully as an affinity function in the case
of mining hidden links in social networks (34) and as an effi-
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cient technique for identifying links in theoretical block models
of community-type networks which are large and dense (35).
We note that the results of our study show that the common
neighbors model for link creation in maritime trade network is
consistently superior to a preferential attachment model for link
creation, which is covered in our work by using node character-
istics, such as degree (SI Appendix, section N). Port gravity is a
special variant of preferential attachment of links in which port
throughputs replace degree.

Model for Forecasting Flow of Cargo on Links. After the warmup
with link creation, we now obtain models for forecasting flows in
the maritime trade network, expressed as tonnage (DWT) trans-
ported over the existing links. We evaluated the performance
of models consisting of the same feature sets as previously, in
combinations extended to the weighted scenario (SI Appendix,
section F). We tested both models of the form given by formula
Eq. 1, where wj; is understood as an estimate of the abso-
lute flow value between ports ¢ and j in year Y+1, as well as
models in which wy; represents the share of the flow outgoing
from port i toward port j. Most generally, in the latter case,
the estimated flow value in year Y+1 between ports ¢ and j is
computed as

Kosowska-Stamirowska
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Fig. 3. Forecast of interregional link openings for dry bulk carriers in 2008 based on 2007 data. Predictions made with at least 50% accuracy using (Top)
common neighbors model (306 predictions, of which 153 are correct; parameter-free model) and (Bottom) port gravity model (84 predictions of which 42
are correct; model parameters tuned to problem instance). Correctly predicted links are marked in blue (line width increasing with actual DWT of opened
link), and false positives are marked in dashed white. Interregional links are chosen for visual clarity. Extending considerations to all links in the network

leads to quantitatively similar results.

Wy

Wi
[} DWT;
(EkEN(i) Wik ’ Zk’EN(j) Wig!
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where DWT; represents the total DWT passing through port ¢ in
year Y, N (i) is the network neighborhood of port 7, that is, the
set of direct trade partners of port i in year Y, and ® represents a
function fitted by a learning method. In the rest of the paper, we
refer to the models following Eq. 2 as the “outflow models.” In
this study, unweighted network data and port throughputs (port
DWT) from year Y were used to predict flows in year Y+1.

We find that the outflow models relying on the number of com-
mon neighbors and sea distance to preferentially assign shares of
cargo to the outgoing links deliver the best forecasts of the actual
flows of cargo in maritime trade network, irrespective of vessel
type. For the vessel types considered, they achieve a coefficient
of determination for log-flow in the range 0.33 to 0.45 (averaged
over the studied period; also SI Appendix, section I) and outper-
form all other models tested (Fig. 4 and SI Appendix, Table S2).
For the alternative network definition reflecting liner shipping
patterns for container vessels, the coefficient of determination is
0.48 (SI Appendix, section K). The relative predictive quality of
these outflow models is stable over the studied period.

The common neighbors feature appears to be particularly well
suited to the outflow model. In our study, assigning flow shares to
outgoing links based on sea distance, only (without the common
neighbors feature), reduces the coefficient of determination by
0.10 to 0.14. By contrast, the importance of including sea dis-
outflow model
and for tankers,

the outflow model based only on common neighbors offers good
prediction quality (coefficients lower by 0.03 to 0.05 than for the
outflow model also including sea distance), whereas, for con-
tainer and general cargo vessels, it performs significantly worse
(coefficients lower by 0.12 than the model also including sea
distance) (SI Appendix, Table S2).

Comparing the outflow model relying on common neighbors
and sea distance with the best absolute flow models considered
(i.e., those following Eq. 1, which include in particular port grav-
ity), we observe, for all vessel types, a significant gap in prediction
quality in favor of the outflow model. This difference is at least
0.06 for all vessel types and is most marked for container and
general cargo vessels (difference of 0.11).

Within the class of models following Eq. 1, port gravity per-
forms best. However, for all vessel types apart from tankers, it
is closely rivaled by a model relying only on common neighbors
with sea distance, which does not require information about port
DWT (coefficient differences of 0.01 to 0.03 with respect to port
gravity). Neglecting historical and cultural ties in the port gravity
model has a very slight effect on the coefficient of determination,
reducing it by 0.01.

Classical gravity models which use population, GDP, and sea
distance between ports do not perform well, and their ability
to predict future trade volumes is close to that of models of
uniformly random network formation.

Interpretation of Outflow Models. Assuming a sufficiently simple
form of function ® (also SI Appendix, section E), the out-
flow models can be interpreted in the following way: Every
unit of trade outgoing from a port follows a weighted random
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Fig. 4. Predictive quality of models for tonnage transported on links of the maritime trade network, 1978-2008. Values are obtained using the better of
the two regressors: random forest and OLS averaged over 24 runs. The best prediction quality is obtained consistently with outflow models including the

common neighbors feature.

walk. In this way, the total throughput of a port is distributed
among its neighbors, proportionally to the weights described by
the model.

The best outflow model relies on weights w; computed as a
function of the number of common neighbors between the ports
and their sea distance. Thus, the share of outgoing trade between
a port 7 and its neighbor j increases if the receiving port j ranks
high in the number of common neighbors with ¢ and decreases
with the distance between the ports.

In the more illustrative case of the outflow model depending
only on common neighbors (which already achieves very good
performance for some vessel types), the matrix of weights w for
the flow process is compactly given as w= G ® G?, where G
is the adjacency matrix representing the unweighted topology
of the network, G? is the matrix square of G (describing the
number of two-hop paths between node pairs), and © represents
element-wise multiplication of matrices, ensuring that flows only
follow existing links. Thus, in this case, the flow weights depend
only on the unweighted network topology through an algebraic
transformation. This allows us to draw an analogy between the
outflow model and a process of shortcutting two steps of an
unweighted random walk (i.e., a walk with weight matrix G) into
a single step: A walker simulates where she would end up after
two steps, then checks whether there is a direct link and, if there
is one, goes through this shortcut. When the graph is regular,
this equivalence is mathematically precise, since the matrix G
corresponds to the random walk transition matrix (up to scal-
ing). We find such a lookahead property of the walker, who
can plan its voyage two steps in advance, natural in the context
of economic exchanges. For the best outflow model depend-
ing on both common neighbors and sea distance, the weight
matrix is computed with an additional dependence on the sea
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distance matrix SD, as w= G ® G*® SD~*, where a >0 is a
deterrence parameter (typically, o € [0.25,0.50], depending on
the vessel type, with little sensitivity to the precise parameter
value).

Extending the link creation models which were considered in
the previous section, the outflow model makes use of the com-
mon neighbors feature to perform a reinforcement of direct
routes (shortcuts) between pairs of ports which have many
trading partners in common. We conclude that the number of
common neighbors between ports appears to be the key feature
controlling the actual volumes of trade flow in the maritime trade
network.

Traffic Redistribution after the Closing of the Port of Kobe. We con-
firm our findings for the mechanisms which govern the evolution
of the network by looking at a localized event of profound sig-
nificance. On 13 January 1995, the port of Kobe, one of the
busiest container ports in the world, was destroyed by a very
severe earthquake (36). The port had to shut down completely,
and the traffic which was originally supposed to flow to Kobe had
to be redirected to other ports. This event created a window of
opportunity for other ports to capture Kobe’s traffic, with conse-
quences lasting long after the port of Kobe reopened. Kobe has
never regained its previous importance in the maritime system,
with traffic never reaching the pre-1995 level.

This unfortunate event creates a rare natural experiment in
which a perfectly exogenous shock results in the closure of a
single important port, forcing an adaptation of flows in the net-
work. The event caused a redirection of traffic on the order of
200 million DWT, which is almost of an order of magnitude less
than the year-to-year traffic changes in the global network in the
1990s (mean change +1,100 million DWT year-to-year, o = 800
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million DWT). Consequently, we used more-fine-grained net-
work data and information about the topology of shipping con-
nections to reinforce the signal-to-noise ratio. The signal related
to the Kobe shock was isolated by restricting our considera-
tions to the flows of an unbiased representative subnetwork
H, with a cutoff point depending on the share of trade with
Kobe before 1995 (see Materials and Methods). Between 1994
and 1995, the exceptional change of Kobe’s trade volume in
exchanges within subnetwork H was —113 million DWT (o =7
million DWT), whereas the exceptional traffic increase of the
remaining ports of the subnetwork H in 1995, excluding Kobe,
is given as +111 million DWT (o =46 million DWT), corre-
sponding well to the traffic lost by Kobe. The reported values of
exceptional changes are controlled for year-to-year traffic change
patterns in the period 1990-2005, excluding the years 1994 and
1995; see SI Appendix, section P for details on detrending. The
strength of the Kobe shock for the considered subnetwork H
is thus at least 2.40. Moreover, the 1995 increase of traffic in
the subnetwork H is clearly the largest such event over an even
longer time span (from the oil price shocks until the end of
the available data [SI Appendix, Table S5 ]). This means that
the redistribution of trade after the Kobe shock was absorbed
by the subnetwork H itself. This also allows us to draw statisti-
cally significant conclusions about the redistribution of flows in
the subnetwork H, even if signals are weaker for some indivi-
dual ports.

We find that, in the short term, traffic redirection from Kobe to
other ports in 1995 is linked to the number of common neighbors
with Kobe of the port in question directly before the cataclysm.
The 15 ports which had the highest number of common neigh-
bors with Kobe in 1994 (SI Appendix, Fig. S13) accounted for
50% of the DWT traffic on the links of the subnetwork H. In
1995, these ports captured a disproportionately large amount
of traffic: 98 million DWT (after controlling for year-to-year
changes; o =16 million DWT). Thus, the ratio between the
detrended traffic increase of these 15 ports and the detrended
traffic loss of Kobe is likely to be disproportionately high at 85%
(o0 =19%).

The common neighbors measure does not rely on any eco-
nomic data besides unweighted network topology. We also con-
sidered measures which included data on throughputs and sea
distances: port gravity, port throughput, and DWT exchange
with Kobe pre-1995. In our study, these methods prove much
more volatile and do not achieve comparable statistical signifi-
cance to the number of common neighbors with Kobe, nor do
they appear to provide any advantage, on average (SI Appendir,
Fig. S14).

We propose the following interpretation for the observed
effect of common neighbors. First, the number of common
neighbors can be seen as a measure of similarity of nodes in trade
networks (37, 38). From a business perspective, a port having a
higher number of neighbors in common with Kobe was able to
serve the same markets as Kobe did before the earthquake and
was therefore a good replacement. Second, by a purely topolog-
ical argument, traffic flowing through Kobe from one port i to
another port j is most easily rerouted using existing link infras-
tructure, via a third port [ which has both 4 and j as its common
neighbors with Kobe. Thus, the larger the number of common
neighbors between Kobe and a port [, the larger this redirection
may be expected to be. Overall, this is consistent with the view
that trade flows follow a form of random walk on the underlying
network structure, with the next hop of the walk being chosen
from the set of the available neighbors.

Discussion

Concluding Remarks. Maritime transport is “the backbone of
global trade and the global economy” (3). Here we present the
rules according to which the system built by ports and ship pas-
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sages evolves over time. We have found that the opening of
new shipping lines and the volume of flows of cargo on existing
links depend on the underlying network structure. The topo-
logical feature which offers the best prediction results, in both
cases, is the number of common neighbors shared by the two
ports. This contribution improves our understanding of a cru-
cial part of our economy and may be used to simulate future
scenarios.

We find that the evolution of the maritime trade system can be
explained by looking only at the unweighted network topology of
shipping connections (sometimes augmented with sea distances).
On the one hand, the models of evolution of the unweighted
topology which we put forward do not depend on trade volumes
(DWT or ship counts). On the other hand, in the flow forecast-
ing scenario, we can predict how ports distribute volumes of their
trade along the network links adjacent to them, by considering
only the unweighted topology and sea distances on existing links.
Using port total DWT, we then obtain good forecasts of link
DWT in absolute terms. The quality of such forecasts is signif-
icantly better than that obtained with gravity-like models, even
those using port DWT.

The discovered importance of the number of common neigh-
bors for forecasting the opening of links in the maritime trade
network and the good performance of the outflow models pro-
vide an indication that trade flows follow a form of random walk
on the underlying network topology. They also give us further
insights into the precise form of this random walk. It has been
remarked that tankers follow Brownian motion, in contrast to
container carriers which follow regular movement patterns (4).
However, our research suggests that actual containers (trade
flows) also follow a form of random walk on the network, thus
giving rise to the observed network effects.

Our research implies that the status quo structure of the
maritime transportation network is a much stronger factor for
predicting future trade flows than population potentials or GDP
of countries. This observation suggests that it is the transporta-
tion links and their structure that foster the development of
maritime trade, rather than the other way around. We believe
this to be a piece of the puzzle in the perpetual debate on
which comes first: economic development or transport infra-
structure (39).

Trade models have been studied extensively in the economics
literature (40). To the best of our knowledge, the only other
works that develop a flow model for maritime trade rely on
gravity (19) or other economic variables (8). Our work is a com-
prehensive study that proposes a network generative model as
well as a model for forecasting flows in a maritime trade network,
both of which are developed and tested on a large, tempo-
ral database of ship movements. We note that our results are
remarkably stable throughout the period analyzed (1978-2008).

We are not aware of any similar trade or transportation net-
work for which comparable temporal effects have already been
observed. We note that the setting of our study is significantly
different from studies of nontemporal data, where the notion of
link prediction is typically equated with the question of detecting
hidden links in a static network (30, 41), allowing the reconstruc-
tion of the current network topology based on incomplete data.
In the hidden link setting, the common neighbors effect has been
singled out for social networks (34). Of the variety of approaches
that have been developed for link prediction in complex net-
works (31, 38), relatively few have been validated in forecasting
settings on real-world temporal datasets, typically for datasets
related to social networks and communication patterns in online
media (cf. e.g., ref. 42). Whereas, in studies of social networks,
the common neighbors measure is often treated as a baseline
for other methods, up to now, for transportation networks, it has
usually been treated as one of many similar network indices, and
perhaps not the most intuitive.
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From the perspective of complex network methodology, our
approach to temporal networks provides a simple and robust
data-driven framework for selecting optimal combinations of rel-
evant sets of features, minimizing research bias. It is sufficiently
powerful to subsume so-called local network approaches given by
so-called indices (31), as well as other polynomial and nonpoly-
nomial combinations of network features and external ones. The
obtained models can typically be analyzed by human researches,
analogously to formulae obtained through symbolic regression
(29). Our methodology also allows for the inclusion of histor-
ical data as node and link features, enabling certain stochastic
learning approaches (42).

While noting the good prediction quality of the proposed mod-
els using the common neighbors feature, the models do not
explain the maritime trade flow in its entirety. The discovered
importance of the number of common neighbors implies that
network evolution is a consequence of a cumulation of network
effects and exogenous shocks. We have provided for at least a
partial identification of the network effects concerned. However,
our models do not reveal to what extent the unexplained effects
are directly attributable to exogenous shocks. Further network
evolution models can be constructed using machine learning
methods tuned to temporal network data (43) and higher-order
flow models with memory (33), most likely at the cost of sac-
rificing simplicity, usability, and interpretability of the models.
One such attempt to extend our results may involve considering
nonlocal network features of nodes by considering network rep-
resentations which capture the spectral structure or random walk
structure of the network, with benchmark references possibly
provided by the seminal deepwalk (44) and node2vec pack-
ages (45) and their hierarchical variants (46). Some preliminary
results obtained using such graph embeddings are discussed in S
Appendix, section H. An alternative approach may rely on node
embeddings in low-dimensional hyperbolic spaces (47, 48).

We also note that the passages of ships do not correspond
directly to the flows of goods and that we analyze ship move-
ments, not the bills of lading. Finally, we note that maritime trade
does not capture the entirety of the world trade. Further studies
on the world trade network with tools from complexity science,
like ref. 49, may be performed to investigate the nature of trade
flows complementary to the maritime realm.

Advantages of the Proposed Models. The strength of the proposed
forecasting models lies in their simplicity, the fact that the com-
mon neighbors measure is parameter-free, and the fact that the
models require small input size to deliver accurate predictions.
The models for both forecasting link opening and flow values
require the knowledge of the direct network neighborhood of
ports, without the need for knowledge of the global network
topology or the development of large economic datasets. In the
case of forecasting link openings, it is just the one-hop network
neighborhood of the two ports and sea distance which are needed
to assign creation probability to an individual link. Indeed, the set
of plausible candidate link openings for a port is both restricted
and easy to find by local search. In the case of forecasting flow
on a link, one needs to know only the throughput volumes of
the two ports concerned, sea distances on the existing links of
each of the two ports, and the network topology to the extent
of the two-hop network distance from each of the two ports. Our
models can thus be seen as local, which makes them substan-
tially different from, for example, the preferential attachment
model, which, in its basic form, requires global knowledge of the
network.

Finally, the fact that common neighbor-type network effects
govern evolution of the maritime trade provides strong evidence
for the irreversibility of shocks, as changes to the structure of
shipping lines are likely to trigger subsequent changes in the
common neighbors measure, propagating throughout the net-
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work. The observed network effects also offer an intuitive and
relatively simple way of estimating the lasting consequences of
shocks.

Areas of Application. We trust our work will benefit researchers
in fields such as economics, ecology, and even studies of cultural
exchanges in archeology (50), providing them with tools to model
the evolution of maritime trade and to simulate the effects of
potential shocks or changes to the system at local, regional, and
global scales.

Most pressingly, according to Russian prognosis for Arctic
shipping, traffic on the Northern Sea Route is expected to rise
to 80 million tons of shipments per year by 2025 (51). This rapid
development generates economic, environmental (52), political,
and social (53) challenges which are at the center of attention
of multiple governments. The development of Arctic shipping is
likely to impact not only the countries that are directly involved
in the Arctic routes and ports due to their geographical position
but also those from whom the traffic will be redirected and those
who can become new transshipment hubs. This will be the first
time since the blockage of the Suez Canal in the 1950s that sea
distances will be effectively modified. Understanding the model
underlying maritime trade is essential to predict the response of
the system. In the common neighbors model, new connections
or flow depend on the previous form of the network, and the
effects of shocks propagate over its entirety, as one reconfigu-
ration modifies creation probabilities and tonnages for multiple
other links. Shortening of sea distances in the network as a result
of Arctic shipping can be seen as an exogenous shock and will
certainly be a trigger for the opening of new sea connections.
Based on this research, we expect further reconfiguration of the
network to depend on network effects. In the case of Arctic
shipping, the identity of ports that will be the first to serve cross-
Atrctic voyages will be of crucial importance to further network
evolution, along with their network of connections. This stands in
contrast to predictions which could potentially be obtained with
gravity models, which are not sensitive to the order in which links
are created.

Our results also make possible the forecasting of maritime
trade flows on shipping lines for the purpose of business intelli-
gence and decision support tools. Simulations of shock scenarios
can be crucial for port operators, shipping companies, and policy
makers. One can model a closing or appearance of a port or pas-
sage, or sudden increases and falls in trade volumes on individual
links. These simulations can help to conduct cost—benefit anal-
yses of development projects for port infrastructures, canals, and
opening of new shipping lines by shipping companies. They can
also facilitate vulnerability analyses for policy makers. Govern-
ments can potentially benefit from the models developed in this
work in order to position (benchmark) themselves with respect to
other players in maritime trade. These models can also help them
to take informed decisions, reached by testing different strategies
and their impact, taking into account the entire maritime system
and not just the local perspective.

Another area of application of our models is related to
epidemiology and bioinvasions, such as the spread of species
which are often transported in the ballast water of ships across
the globe or by insects, birds, and other animals that come
onboard a ship. Cruise ships are also known to disseminate
infectious diseases such as influenza (54). Our models may help
researchers recreate or model future vectors of spread of epi-
demics or bioinvasions, without recourse to a complete global
database.

With respect to all potential applications, we highlight that the
classical models of gravity, in which one, first of all, takes into
account the economic and demographic development of pairs
of places and the distance between them, are not well adapted
to maritime trade, even as a baseline model. It appears that
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the network structure of maritime connections bears much more
information about the future of maritime trade and that it is
therefore of crucial importance for economic development.

Materials and Methods

Learning Model Selection. Manually selected combinations of features were
fed into appropriately chosen learning methods.

The considered task of forecasting link openings is one of binary clas-
sification (deciding whether a given potential link is created or not). In
the setting where we require the classifier to return a link creation prob-
ability, we found that the simple logit classifier provided almost optimal
predictions for the considered feature combinations. This optimality was
verified, in particular, by comparison to a bucketing classifier for low-
dimensional models (e.g., for the case of a parameter-free model such as
common neighbors, this classifier corresponds to ranking potential links by
the considered feature). The results presented in the paper correspond to
values obtained with logit. The results for port gravity presented in Fig. 3
were optimized by exhaustive search over the parameter space of log-
linear models.

For the flow forecasting task, we aim at predicting log values of DWT
transported over the links based on features from the previous year. We
applied supervised learning with training and test sets of equal size. We
tested a number of regressors, including multilayer perceptron neural net-
works, random forest, and linear regression models (including ordinary least
squares [OLS]). We then compared their performance to the outcome of
metaoptimization process over regressors and metaparameters obtained
using the AutoML framework [auto-sklearn toolkit (55)]. We found that a
random forest classifier with suitably tuned metaparameters (the same for
all tests) consistently gave cross-validation testing results on par with the
best learning models chosen by AutoML (and was also the model most fre-
quently returned by this framework). We also used OLS as a staple backup,
which has the advantage of involving a small number of internal parame-
ters with clear interpretation. The respective loss functions are described in
SI Appendix, section I.

Training and Testing Sets. The training and testing sets were constructed in
the following manner. In each run, the set of nodes was split into two sub-
sets, where each port entered either the training or testing set with equal
probability. The cut was consistent over all annual snapshots of the network
considered in a given run. Only links between pairs of nodes belonging to
the same set were considered, thus approximately 1/4 of the links entered
the training set and 1/4 entered the testing set, and the rest were discarded
from the run. In this way, both the training and the testing sets provided
representative samples for the whole network, while minimizing possible
autocorrelation between the two sets. Node features were computed based
on parameters of the entire network. Experiments were performed over
24 runs. The metaparameters of the regressors (specifically, random forest)
were chosen so that the predictive quality of the models on the training and
testing sets was comparable. For the classifiers and regressors with fewer
internal parameters (OLS, logit), we also used the same approach with train-
ing and testing sets to avoid the effect of tuning model parameters to single
data points (i.e., large ports such as Singapore which control a large part of
the world’s traffic).

In the case of forecasting link openings, we have restricted our atten-
tion to the links absent from the network in year Y for potential addition
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in Y+1. In the case of flow forecasting, flows in year Y+1 were pre-
dicted on those edges which were present in year Y so as to avoid
introducing bias.

We do not provide an explicit statistical significance analysis of the pre-
dictive quality of our models. We note that all available historical data
(31 year-to-year experiments) point to the consistent superiority of mod-
els relying on common neighbors with respect to all gravity models. These
experiments are ordered by time. While this is a weaker property than
independent trials, most statistical significance formulas developed for
independent trials carry over rigorously to this setting, including those
for binomial proportion confidence intervals. For example, if we were to
abstractly assume that there exists a probability value « € [0%, 100%)] such
that the common neighbors model performs better than port gravity at
forecasting link openings with probability « in any year-to-year experiment,
we obtain, from our study, a Clopper-Pearson interval of o € [88.7%, 100%)],
for a confidence level of 95% (P = 0.05).

The performed averaging over multiple (24) runs minimizes noise due
to randomness in choice of training sets and learning algorithm conver-
gence, thus smoothing the obtained quantitative results while not affecting
qualitative results.

The Kobe Shock: Construction of Subnetwork. The subnetwork H used to iso-
late signal after the Kobe earthquake was constructed in the following way.
First, we identified ports for which the trade with Kobe accounted for at
least 10% of their total throughput in 1994, and not less than 10,000 DWT in
moves recorded in the database in that year. There were 16 such ports. Then
we added their direct network neighbors to the node set of the subnetwork
along with the links relaying them with the identified ports, to form the
link set of the subnetwork. Thus, the subnetwork H is almost bipartite and,
technically, is a subgraph of the entire network but not an induced sub-
graph. We retained the aggregated DWT value transported over the links
of the subnetwork H in each year. Considering a union over all of the years
1994-1996, there were 614 active ports in this subnetwork. The analysis of
detailed effects of the Kobe shock is made under moderate assumptions on
normality and weak correlation of year-to-year DWT changes for port sub-
sets within subnetwork H, which are justified by patterns observed in the
dataset (S/ Appendix, section P).

Data Availability Statement. By permission of Lloyd’s List Intelligence, the
anonymized network snapshots used in this study will be made available
to any researcher, for scientific purposes, upon request made to the author
(https://github.com/zuzannastamirowska/maritime). Access to the complete
data source is also possible on a commercial basis. The data are also available
in paper form, for example, at the British Library.
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